低速冲击下过渡间隔螺旋阻尼结构的抗冲击性能研究

王博楷, 秦园, 王玉晖, 毛天啸, 王瑶, 肖有才

装备环境工程 ›› 2026, Vol. 23 ›› Issue (1) : 1-8.

PDF(3335 KB)
PDF(3335 KB)
装备环境工程 ›› 2026, Vol. 23 ›› Issue (1) : 1-8. DOI: 10.7643/ issn.1672-9242.2026.01.001
武器装备

低速冲击下过渡间隔螺旋阻尼结构的抗冲击性能研究

  • 王博楷1, 秦园1*, 王玉晖1, 毛天啸1, 王瑶1, 肖有才2
作者信息 +

Impact Resistance of Damping Twist Structures with Spaced-transition Layers under Low-velocity Impact

  • WANG Bokai1, QIN Yuan1*, WANG Yuhui1, MAO Tianxiao1, WANG Yao1, XIAO Youcai2
Author information +
文章历史 +

摘要

目的 研究过渡间隔螺旋阻尼结构(Damping Twist Structure with Spaced-Transition Layer,DTST)在冲击条件下的抗冲击性能。方法 借鉴自然界生物Bouligand结构,使用相同金属与橡胶材料制备3种不同螺旋角度的过渡间隔螺旋阻尼结构。以多层约束阻尼结构(MCLD)为基准试件,开展150 J能量下的低速冲击试验。对力学冲击响应,冲击损伤样貌与能量吸收特性进行分析,探讨结构构型与螺旋角度对DTST冲击性能的影响。结果 螺旋角度为15°~45°时,DTST的螺旋角度与峰值力呈负相关,与变形程度和能量吸收呈正相关。冲击后的DTST存在中心集中变形与局部剪切变形,与MCLD产生明显差异。结论 间隔过渡层的结构特性与Bouligand的耦合作用是影响DTST力学性能和能量吸收特性的主要因素,同时造成了DTST在低速冲击下的不规则损伤。DTST的冲击缓冲时间相比MCLD提升43.2%。DTST的能量吸收相比MCLD最低下降5.0%,最高提升16.5%。DTST的质量比吸能相比MCLD的增幅为20.8%~48.6%。

Abstract

The work aims to investigate the impact resistance of the Damping Twist Structure with the Spaced-transition Layer (DTST) under low-velocity impact conditions. Inspired by the Bouligand structure in nature, three DTSTs with different twist angles were fabricated with the same metal and rubber materials. With multilayer constrained layer damping structures (MCLD) as reference specimens, low-velocity impact tests were conducted at 150 J energy levels. The mechanical impact response, impact damage morphology, and energy absorption characteristics were analyzed, and the effects of structural configurations and twist angles on DTST impact resistance were investigated. Within a twist angle range of 15°~45°, the twist angle of DTST exhibited a negative correlation with peak force and a positive correlation with deformation and energy absorption. The post-impact DTST exhibited central concentrated deformation and localized shear deformation, showing distinct differences from MCLD. The structural characteristics of the spaced-transition layer and its coupling effect with the Bouligand layer are the primary factors affecting the mechanical properties and energy absorption characteristics of the DTST, while also contributing to the irregular damage observed in the DTST under low-velocity impact. Compared to the MCLD, the DTST achieves a 43.2% improvement in impact duration. DTST's energy absorption shows a minimum decrease of 5.0% and a maximum increase of 16.5% relative to MCLD. DTST's mass-to-energy absorption ratio demonstrates an increase ranging from 20.8% to 48.6% compared to MCLD.

关键词

复合材料 / 黏弹性材料 / 仿生结构 / 低速冲击 / 能量吸收 / 损伤

Key words

composite materials / viscoelastic materials / bionic structures / low-velocity impact / energy absorption / damage

引用本文

导出引用
王博楷, 秦园, 王玉晖, 毛天啸, 王瑶, 肖有才. 低速冲击下过渡间隔螺旋阻尼结构的抗冲击性能研究[J]. 装备环境工程. 2026, 23(1): 1-8 https://doi.org/10.7643/ issn.1672-9242.2026.01.001
WANG Bokai, QIN Yuan, WANG Yuhui, MAO Tianxiao, WANG Yao, XIAO Youcai. Impact Resistance of Damping Twist Structures with Spaced-transition Layers under Low-velocity Impact[J]. Equipment Environmental Engineering. 2026, 23(1): 1-8 https://doi.org/10.7643/ issn.1672-9242.2026.01.001
中图分类号: TJ03   

参考文献

[1] 陈东, 包睿, 李鹏.装甲防护衬层及相关材料研究进展[J].装备环境工程, 2023, 20(7): 9-16.
CHEN D, BAO R, LI P.Research Progress of Armored Lining and Materials[J].Equipment Environmental Engineering, 2023, 20(7): 9-16.
[2] 张慧慧, 董方栋, 伍杨.基于不同工艺的UHMWPE纤维防弹层的多入射角的抗弹性能研究[J].装备环境工程, 2025, 22(7): 1-8.
ZHANG H H, DONG F D, WU Y.Ballistic Performance of UHMWPE Fiber Armor Panels with Different Manufacturing Processes under Multi-Angle Impacts[J].Equipment Environmental Engineering, 2025, 22(7): 1-8.
[3] WANG H F, TANG K, WANG J X, et al.Thickness Configuration Optimization of B4C/UHMWPE Composite Armor under Varying Impact Velocities and Areal Densities through Numerical and Experimental Study[J].Scientific Reports, 2025, 15: 34365.
[4] 盛宏航, 吴薇, 范文州, 等.碳纤维-玻璃纤维混杂环氧树脂基复合材料低速冲击性能研究[J].中国塑料, 2025, 39(8): 12-18.
SHENG H H, WU W, FAN W Z, et al.Study on Low-Velocity Impact Properties of Carbon/Glass Hybrid Fiber-Reinforced Epoxy Matrix Composites[J].China Plastics, 2025, 39(8): 12-18.
[5] LIU S J, DING Y W, FENG Y, et al.Low-Velocity Impact Size Effect of Carbon Fiber Composite Laminates: Experimental and Mechanism Research[J].Thin-Walled Structures, 2026, 218: 114028.
[6] BAABDULLAH O, OTHMAN R, KHASHABA U A.Experimental and Theoretical Investigation of the Low Velocity Impact Response of CFRP Composite Beams[J].Results in Engineering, 2025, 28: 107128.
[7] 黄舟, 贾东, 陈军红, 等.工程橡胶压缩实验和缓冲特性分析[J].装备环境工程, 2018, 15(6): 21-26.
HUANG Z, JIA D, CHEN J H, et al.Compression Experiment and Buffering Characteristic Analysis of Engineering Rubber Products[J].Equipment Environmental Engineering, 2018, 15(6): 21-26.
[8] XIE Z W, WANG R, ZHAO H, et al.Road Safety Performance of a New W-Beam Guardrail System with Rubber Sandwich Layer under Vehicle Collisions: Experimental and Numerical Studies[J].Engineering Structures, 2025, 343: 121216.
[9] RAJKUMAR D, MAHESH V, JOLADARASHI S, et al.A Novel Flexible Green Composite with Sisal and Natural Rubber: Investigation under Low-Velocity Impact[J].Journal of Natural Fibers, 2022, 19(15): 11696-11707.
[10] MAHESH V, JOLADARASHI S, KULKARNI S M.Comparative Study on Kevlar/Carbon Epoxy Face Sheets with Rubber Core Sandwich Composite for Low Velocity Impact Response: FE Approach[J].Materials Today: Proceedings, 2021, 44: 1495-1499.
[11] GOWDA D, MAHESH V, MAHESH V, et al.Low-Velocity Impact Characterization of Polyurethane Rubber/Nano-Clay Enriched Sustainable Sandwich Composites: Synergy of Experimentation and Simulations[J].Polymer Composites, 2024, 45(15): 14191-14212.
[12] 周荣欣, 刘页.冲击荷载下橡胶超材料混凝土的数值模拟[J].高压物理学报, 2025, 39(7): 38-54.
ZHOU R X, LIU Y.Numerical Simulation of Rubberized Metaconcrete under Impact Load[J].Chinese Journal of High Pressure Physics, 2025, 39(7): 38-54.
[13] 朱镕鑫, 白雪飞, 梅志远, 等.碳/玻混杂夹层板低速撞击损伤特性试验研究[J].中国舰船研究, 2020, 15(4): 66-72.
ZHU R X, BAI X F, MEI Z Y, et al.Experimental Study on Damage Characteristics of Hybrid Carbon-Glass Fiber Sandwich Panel under Low Velocity Impact[J].Chinese Journal of Ship Research, 2020, 15(4): 66-72.
[14] 吴璟, 付宇彤, 李迈润, 等.CFRP-橡胶叠层复合材料吸能设计与低速冲击性能优化[J].复合材料学报, 2026, 44(3): 749-758.
WU J, FU Y T, LI M R, et al.Energy Dissipation Mechanism and Low-Velocity Impact Perfor-Mance Optimization of CFRP-Rubber Laminated Composites[J].Acta Materia Compositae Sinica, 2026, 44(3): 749-758.
[15] 刘亚洵, 梅海, 刘齐文, 等.仿生结构陶瓷金属复合板抗冲击性能数值研究[J].应用力学学报, 2023, 40(5): 1034-1042.
LIU Y X, MEI H, LIU Q W, et al.Numerical Study on Impact Resistance of Bionic Structure Metal Composite Plate[J].Chinese Journal of Applied Mechanics, 2023, 40(5): 1034-1042.
[16] 王海任, 李世强, 刘志芳, 等.王莲仿生梯度蜂窝的面外压缩行为[J].高压物理学报, 2020, 34(6): 84-92.
WANG H R, LI S Q, LIU Z F, et al.Out-of-Plane Compression Performance of Gradient Honeycomb Inspired by Royal Water Lily[J].Chinese Journal of High Pressure Physics, 2020, 34(6): 84-92.
[17] FLORES-JOHNSON E A, SHEN L M, GUIAMATSIA I, et al.A Numerical Study of Bioinspired Nacre-Like Composite Plates under Blast Loading[J].Composite Structures, 2015, 126: 329-336.
[18] 纪垚, 徐双喜, 陈威, 等.Al/CFRP/混合蜂窝铝复合夹芯多层结构抗侵彻数值模拟[J].高压物理学报, 2023, 37(1): 84-93.
JI Y, XU S X, CHEN W, et al.Numerical Simulation of Anti-Penetration of Al/CFRP/Hybrid Honeycomb Aluminum Composite Sandwich Multilayer Structure[J].Chinese Journal of High Pressure Physics, 2023, 37(1): 84-93.
[19] 范晓文, 杨欣, 许述财, 等.仿骨单位薄壁结构轴向和斜向耐撞性研究[J].载人航天, 2020, 26(2): 142-151.
FAN X W, YANG X, XU S C, et al.Study on Crashworthiness of Thin-Walled Structure Based on Osteon under Axial and Oblique Loads[J].Manned Spaceflight, 2020, 26(2): 142-151.
[20] 杨帆, 秦子尚, 李达诚, 等.布立冈型螺旋纤维仿生复合材料动静态力学行为[J].兵工学报, 2025, 46(2): 256-266.
YANG F, QIN Z S, LI D C, et al.Static and Dynamic Mechanical Behaviors of Bouligand-Type Biomimetic Composite Materials[J].Acta Armamentarii, 2025, 46(2): 256-266.
[21] WU H L, GUO A F, KONG D K, et al.Preparation of Bouligand Biomimetic Ceramic Composites and the Effect of Different Fiber Orientations on Mechanical Properties[J].Journal of Manufacturing Processes, 2024, 132: 789-801.
[22] 邵剑锋, 巢昺轩, 马思齐, 等.3D打印C-PEEK的仿生结构设计和力学行为分析[J].航天制造技术, 2024(5): 65-73.
SHAO J F, CHAO B X, MA S Q, et al.Biomimetic Structure Design and Mechanical Behavior of 3D Printed Carbon Fiber-Polyetheretherketone[J].Aerospace Manufacturing Technology, 2024(5): 65-73.
[23] 韩登安, 徐丹, 叶仁传, 等.冰雹载荷下基于碳纤维增强复合材料的腔棘鱼鳞双螺旋仿生结构的撞击损伤分析[J].高压物理学报, 2022, 36(4): 164-172.
HAN D A, XU D, YE R C, et al.Analysis on Damage of Double-Helicoidal Carbon Fiber Reinforced Polymer Bionic Structure Inspired by Coelacanth Scales under Hail Load[J].Chinese Journal of High Pressure Physics, 2022, 36(4): 164-172.
[24] GAO Z C, AN Y M, XU K L, et al.Mechanical Performance of Biomimetic Cf/ZrB2-SiC Composites with a Bouligand Structure[J].Journal of Alloys and Compounds, 2025, 1039: 183316.
[25] MA J, LUAN Y B, LIU C Y, et al.Global Optimization of Failure Behavior and Strength-Toughness Performances of Fiber Reinforced Bionic Bouligand Structural Composite with Isotropic Stainless Steel Ultra-Thin Strips[J].Composites Science and Technology, 2025, 261: 111040.
[26] YAN W K, ZHANG D S, YANG F.Study on the Impact Resistance of Bio-Inspired Bouligand-Type CFRP under Repeated Impacts[J].Polymer Composites, 2025, 46(S3): S152-S161.

基金

山西省研究生教育创新计划支持(2025SJ371); 国家自然科学基金(52302475); 山西省基础研究计划资助项目(202403021221149); 太原科技大学博士启动基金(20222093)

PDF(3335 KB)

Accesses

Citation

Detail

段落导航
相关文章

/